What is Numpy in Python? Numpy Examples- Python For Data Science


What is Numpy?

Numpy means Numerical Python and It is a library in python. It helps to create multi-dimensional arrays. You can even use numpy as np by importing it. The syntax is “import numpy as np

Also, It is known as ndarray.


Examples:

np.arange(0,25): It is similar to built in function range in python.

.reshape(5,5): It helps to convert range or 1 d array to 2d array (Matrix)

Let me consider one example to make this more clear to you...


import numpy as np

jas=np.arange(0,25)

jas

output>> array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,

       17, 18, 19, 20, 21, 22, 23, 24])


The above output indicates the range of elements starting from zero and ending with 24. These elements are stored in the variable named jas.

Now I am going to convert it into 2d array by using .reshape() method.


newjas=jas.reshape(5,5)

newjas

output>>

array([[ 0,  1,  2,  3,  4],

       [ 5,  6,  7,  8,  9],

       [10, 11, 12, 13, 14],

       [15, 16, 17, 18, 19],

       [20, 21, 22, 23, 24]])

 

You can also perform slicing operations for 2d arrays. It is also similar to normal slicing in python.

Now, I am gonna perform slicing operation to grab [10,11] from the above matrix or 2d array.

 

newjas[2,0:2]

output>> array([10, 11])

 

np.random method helps to print random integers.

np.random.rand(3): It prints random 3 integer values

np.random.randint(3): It prints any 1 random integer from 1 to 3

np.random.randn(5): It prints 5 different values with standard deviation

 

Examples :

np.random.rand(2,2)   

out>>

array([[0.79726042, 0.07532593],

       [0.61702185, 0.79740291]])   

 

np.random.randn(3,3)

out>>

array([[ 1.56126572, -0.29426117,  1.31736193],

       [ 1.56405012, -1.68793157,  0.20998384],

       [-0.05586385,  0.08771844, -1.46522321]])

 

np.random.randint(6,10)

out>> 6

 

To print the maximum and minimum values in array we can use two methods called .max() and .min()


newjas.max()

out>>

24

 

newjas.min()

out>>

0


We can even perform copy operation. It helps to copy the array elements to another variable.


newnew=newjas.copy()

newnew

out>>

array([[ 0,  1,  2,  3,  4],

       [ 5,  6,  7,  8,  9],

       [10, 11, 12, 13, 14],

       [15, 16, 17, 18, 19],

       [20, 21, 22, 23, 24]])


We can make any changes to the new copied array and it doesn’t affect the original array.

The broadcasting is also possible here, where you can change elements in array.


newnew[1:2]=100

newnew

array([[ 0,  1,  2,  3,  4],

       [ 100,  100,  100,  100,  100],

       [10, 11, 12, 13, 14],

       [15, 16, 17, 18, 19],

       [20, 21, 22, 23, 24]])

 


Post a Comment

Previous Post Next Post